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In this paper we present a new method to derive Boussinesq-type equations from
a variational principle. These equations are valid for nonlinear surface-water waves
propagating over bathymetry. The vertical structure of the flow, required in the
Hamiltonian, is approximated by a (series of) vertical shape functions associated with
unknown parameter(s). It is not necessary to make approximations with respect to the
nonlinearity of the waves. The resulting approximate Hamiltonian is positive definite,
contributing to the good dynamical behaviour of the resulting equations. The resulting
flow equations consist of temporal equations for the surface elevation and potential,
as well as a (set of) elliptic equations for some auxiliary parameter(s). All equations
only contain low-order spatial derivatives and no mixed time–space derivatives. Since
one of the parameters, the surface potential, can be associated with a uniform shape
function, the resulting equations are very well suited for wave–current interacting
flows.

The variational method is applied to two simple models, one with a parabolic
vertical shape function and the other with a hyperbolic-cosine vertical structure. For
both, as well as the general series model, the flow equations are derived. Linear
dispersion and shoaling are studied using the average Lagrangian. The model with
a parabolic vertical shape function has improved frequency dispersion, as compared
to classical Boussinesq models. The model with a hyperbolic-cosine vertical structure
can be made to have exact phase and group velocity, as well as shoaling, for a certain
frequency.

For the model with a parabolic vertical structure, numerical computations are done
with a one-dimensional pseudo-spectral code. These show the nonlinear capabilities
for periodic waves over a horizontal bed and an underwater bar. Further some
long-distance computations for soliton wave groups over bathymetry are presented.

1. Introduction
The discovery of the Hamilton theory for surface-water waves, independently made

by Zakharov (1968), Broer (1974) and Miles (1977) (see also Milder 1977), was
associated with the search for approximate Hamiltonian models containing as much
as possible of the essential characteristics of the exact theory. While Zakharov (1968)
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focused especially on deep-water waves, Broer (1974, 1975) and Miles (1977) also
paid attention to relatively long waves of Boussinesq type.

Positive definiteness of the Hamiltonian is one of the important properties of the
Hamiltonian, since it contributes to the good dynamical behaviour of the resulting
equations. Non-positivity of the approximate Hamiltonian may lead to instabilities
(see e.g. Milder 1990; Broer 1974; Katopodes & Dingemans 1989).

Dingemans (1997, § 5.6) describes several methods for constructing Boussinesq-type
models with positive-definite Hamiltonian, but these methods are quite tedious and
have certain ambiguities regarding the order of certain operators (see also Broer
1974, 1975; Broer, van Groesen & Timmers 1976). The described models are weakly
nonlinear.

Further, there is the demand for improved frequency dispersion and nonlinear
characteristics in Boussinesq models, as compared to the classical ones. As a
result, several improved Boussinesq-type models have been developed, starting with
Madsen, Murray & Sørensen (1991) and Madsen & Sørensen (1992) using methods
of Witting (1984). Another step was made with the introduction of a high-order
nonlinear Boussinesq-type model in Agnon, Madsen & Schäffer (1999) (see also
Madsen, Bingham & Schäffer 2003; Fuhrman & Bingham 2004), which uses the free-
surface boundary conditions as found from Hamilton theory. However, the additional
approximations to relate the free-surface quantities to those at another fixed level
destroy the positive definiteness of the Hamiltonian. The same is true for other
high-order methods (e.g. Dommermuth & Yue 1987; West et al. 1987).

Lynett & Liu (2004a,b) derive a (non-Hamiltonian) Boussinesq-type of model in
which they use a multi-layer approach in the vertical. In each layer they use a parabolic
vertical structure for the horizontal velocity, and a linear one for the vertical velocity.
By adding layers, the frequency-dispersion characteristics can be improved (Lynett &
Liu 2004b; Hsiao et al. 2005).

A fully nonlinear and positive-definite Hamiltonian model for waves over bathy-
metry has been devised by Radder (1992), which however is of quite complicated
form especially when constructing numerical solutions (Otta, Dingemans & Radder
1996). See Radder (1999) for a review of Hamiltonian models for water waves.

Here, we will present a variational method to derive Boussinesq models for water
waves over bathymetry (for shortness, we will call these variational Boussinesq
models). The present method is relatively easy, leads to a positive-definite Hamiltonian
and can be fully nonlinear if desired. Besides the general form we also give some
simple examples for three different vertical velocity-potential structures: parabolic,
hyperbolic cosine and from a power series. We restrict ourselves to mildly sloping
bathymetry, to simplify the resulting equations, but this is not essential to the method.
The advantage of the present variational Boussinesq model is that no higher-order
spatial and/or mixed spatial-temporal derivatives appear. But, this is at the cost of the
requirement to solve one or more additional linear elliptic equations in the horizontal
plane.

First, we will outline the methodology of our method in § 2. Then, in § 3, we will
apply this to a simple parabolic shape function. Thereafter we will present the general
case of a series of vertical shape functions and associated parameters in § 4. Also
two more examples of the method will be given, one with a cosh (hyperbolic-cosine)
vertical shape function, and another with a power-series representation of the vertical
structure. Some linear characteristics, e.g. frequency dispersion and shoaling by depth
changes, will be studied in § 5. For this we will use the average Lagrangian technique
of Whitham (1974), and apply it also to the three model examples. Finally, in § 6,
we will present numerical simulations using the parabolic vertical-structure model, in
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order to study the applicability and nonlinear characteristics of the model. Periodic
waves and confined wave groups will be computed, both when propagating over a
horizontal bed, as well as over bathymetry.

2. Variational principle and modelling
We start from the variational principle for irrotational surface-water waves on an

incompressible inviscid homogeneous fluid, in the form as given by Miles (1977).
With φ(x, z, t) the velocity potential, ζ (x, t) the free-surface elevation and ϕ(x, t) ≡
φ(x, ζ (x, t), t) the velocity potential at the free surface, we have

0 = δL = δ

∫∫∫
L dx dt (2.1a)

with

L = ϕ∂tζ − H and H =

∫ ζ

−h0

1

2

[
(∇φ)2 + (∂zφ)2

]
dz +

1

2
g ζ 2. (2.1b)

Here L (ζ, ϕ) is the Lagrangian, L(ζ, ϕ; x, t) is the associated Lagrangian density per
unit of horizontal area and time and H (ζ, ϕ; x, t) is the Hamiltonian density, i.e. the
sum of the kinetic and potential energy densities per unit area. The horizontal and
vertical coordinates are x =(x1, x2)

T and z, respectively, and t is the time coordinate.
The irrotational fluid flow is described by a velocity potential φ(x, z, t), with the
horizontal and vertical flow velocities given by ∇φ and ∂zφ, respectively, where
∇ ≡ (∂x1

, ∂x2
)T is the horizontal gradient operator. Term (∇φ)2 denotes the inner

product (∇φ) · (∇φ). The fluid domain is bounded below by the sea bed at z = −h0(x)
and above by a free surface at z = ζ (x, t). Further, g is the acceleration due to
gravity, the fluid mass density is taken to be constant and equal to 1.

As shown by Miles (1977), the above Lagrangian variational principle is equivalent
to the Hamiltonian approach. The Hamiltonian H (ζ, ϕ; t) itself is the spatial integral
of (2.1b):

H =

∫∫
H dx. (2.2)

The flow dynamics are completely described by ζ and ϕ, provided that in the fluid
interior the Laplace equation is satisfied, as well as the kinematic boundary condition
at the seabed (Zakharov 1968; Broer 1974; Milder 1977; Miles 1977).

While the above equations are exact and give all the equations necessary for the
description of the flow, they are in general not solvable in closed form. Therefore,
for practical applications approximations have to be made. We directly model
the horizontal and vertical velocities, ∇φ and ∂zφ, in the Hamiltonian density H ,
equation (2.1b), and apply this in the variational principle (2.1a). In doing so,
several characteristics of the exact Hamiltonian system can be transferred into the
approximate flow equations. By Noether’s theorem, symmetries in the variational
principle translate into conservation laws (see e.g. Benjamin & Olver 1982; Benjamin
1984; Brizard 2005). Among these are conservation of energy and mass; this is due
to the independence of the Hamiltonian of time translations and of the choice of the
zero level of the velocity potential. In general, the Hamiltonian is not constant under
changes of the horizontal position x, since the still water depth h0 is a function of
x. So, apart from the special case when h0 is a constant, horizontal momentum will
not be conserved. But conservation of mass and energy can easily be maintained in
approximate models (as well as horizontal momentum for the case of h0 constant).
Another property of the Hamiltonian density (2.1b) is that it is positive definite.
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For shortness of notation, the summation convention is used throughout this paper,
i.e. a repeated index that indicates summation is used:

αmβm ≡
M∑

m=1

αmβm. (2.3)

Repeated italic indices indicate summation from 1 to M .
Since we are interested in large horizontal domains with the surface waves

propagating horizontally, we choose to approximate the potential φ in the fluid
interior by a vertical structure:

φ(x, z, t) = ϕ(x, t) + fm(z; h0, ζ, κm)ψm(x, t) (2.4a)

with

fm = 0 at z = ζ (x, t) (2.4b)

for m = 1, 2. . .M . Here fm(z; h0, ζ, κm) are the prescribed vertical shape functions
associated with the parameters ψm(x, t) for m = 1, 2. . .M , with M the (small) number
of shape functions used. Further, the κm(x) are optional shape parameters, which may
eventually be specified (e.g. an expected curvature of the velocity profile based on
knowledge of the incoming wave field). Note that we assume κm(x) to be known and
fixed a priori.

The requirement (2.4b) is essential: the shape functions fm have to be zero at the free
surface. It guarantees that only two evolution equations with simple time derivatives
∂tζ and ∂tϕ will appear, when taking the variational derivatives with respect to the
surface potential ϕ and elevation ζ of the term ϕ∂tζ in the Lagrangian (2.1). Notice
that Whitham (1967), in deriving Boussinesq-type equations using a Lagrangian
variational approach, also remarks that the flow equations become simpler in terms
of the surface potential. In the approximation (2.4a), the first term ϕ(x, t) can be
thought of as being associated with a uniform shape function, i.e. equal to 1 for all z.
This means that the model will always include a description well suited to interactions
between short waves and long waves or currents. As a result, we have the following
Hamiltonian description in terms of the canonical variables ζ and ϕ:

∂tζ = +
δH

δϕ
and ∂tϕ = −δH

δζ
(2.5a)

under the requirement that

δH

δψm

= 0 for m = 1, 2. . .M , (2.5b)

where δH /δζ , δH /δϕ and δH /δψm denote the variational derivatives of
H (ζ, ϕ, ψm) with respect to ζ , ϕ and ψm, respectively.

Using (2.4a), we have the following expressions for the flow velocities:

∇φ = ∇ϕ + fm∇ψm + (∂ζfm)ψm∇ζ + (∂h0
fm)ψm∇h0 + (∂κm

fm)ψm∇κm, (2.6a)

∂zφ = (∂zfm)ψm (2.6b)

for m = 1, 2. . .M . Since our interest is in waves propagating in the coastal zone, where
bed slopes are typically small, we restrict ourselves to mildly sloping beds. The bed
slopes ∇h0 and parameter derivatives ∇κm then are neglected when approximating
the horizontal and vertical flow velocities, ∇φ and ∂zφ, in the Hamiltonian density
H . If the mild-slope assumption is not imposed, additional terms appear in the (still
positive-definite) Hamiltonian density H and in the resulting flow equations. These
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extra terms are of importance for wave reflections and in the case of rather steep
slopes (Dingemans & Klopman 2009).

Using the mild slope approximation, (2.6) simplify to

∇φ ≈ ∇ϕ + fm∇ψm + (∂ζfm)ψm∇ζ, (2.7a)

∂zφ = (∂zfm)ψm (2.7b)

for m = 1, 2. . .M . When applied in (2.1b), a positive-definite Hamiltonian density
H (ζ, ϕ, ψm; x, t) will be the result. Furthermore, the cross-space z is integrated out,
and the resulting system is only a function of the propagation space x and time
t . Since, in our approximation, the highest spatial derivatives in the Hamiltonian
density H are (quadratics of) first derivatives, the highest derivatives in the potential
flow equations (2.5) will be second-order spatial derivatives. No mixed time–space
derivatives appear. As we will see later, (2.5b) is, for given ζ and ϕ, a set of coupled
linear second-order elliptic equations in the additional functions ψm, m = 1, 2. . .M .

While the above equations (2.5) are in terms of the surface potential ϕ, it is
also possible to express them in terms of the surface-potential gradient u ≡ ∇ϕ.
Note that u is not equal to the horizontal flow velocity ∇φ at the free surface, i.e.
u = [∇φ]z=ζ + [∂zφ]z=ζ ∇ζ . After replacing ∇ϕ with u = (u1, u2)

T in the Hamiltonian
H , we get the following Hamiltonian system:

∂tζ = −∇ · δH

δu
and ∂t u = −∇ δH

δζ
, (2.8)

under the additional requirement that each δH /δψm = 0 for all m = 1, 2 . . . M . As
for all Boussinesq models, the Laplace equation is no longer satisfied exactly in the
fluid interior. So while the flow is still irrotational, the fluid is no longer exactly
incompressible. However, as can be seen from the equation for ∂tζ in (2.8), we still
have depth-integrated mass conservation (also in the velocity-potential formulation).
Notice that an extension to flow with vorticity can easily be carried out using Shepherd
(1990, equation (4.45)).

As a practical and simple application of the above approach, we will next consider
the example of a single parabolic shape function (M = 1), which we will call hereafter
the parabolic structure model. Next, we will continue with the more general case of
several shape functions (M > 1). Finally, we discuss the case of a hyperbolic-cosine
shape function (to be called the cosh or hyperbolic-cosine structure model in the
remainder).

3. Parabolic structure model
Boussinesq (1872), for the case of a horizontal bottom, expressed the velocity

potential φ as a series in the z direction around the bed level z = −h0. Due to
the impermeability of the bed, the vertical velocity ∂zφ will be zero at the bed level
z = −h0. Then, to lowest order, the first deviation from a depth-uniform potential
will be a parabolic contribution, in terms of the distance z +h0 to the bed. Therefore,
as a simple vertical structure model, we take M = 1 in (2.4a) and a parabolic shape
function f (p)(z; ζ, h0):

f (p)(z; ζ, h0) =
1

2
( z − ζ )

2 h0 + z + ζ

h0 + ζ
, (3.1)

satisfying ∂zf
(p) = 0 at the bed z = −h0 and f (p) = 0 at the free surface z = ζ . Further

f (p) has been scaled in such a way that the associated parameter ψ (p)(x, t) equals
the vertical velocity ∂zφ at the free surface. It is assumed that the above parabolic
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structure model is also a good approximation for the vertical flow structure in the
case of mild bottom slopes.

For shortness of notation, we introduce the total water depth h(x, t) ≡ h0(x) +
ζ (x, t). The Hamiltonian density H (p)(ζ, ϕ, ψ (p); x, t) becomes, for the parabolic shape
function (3.1), after vertical integration using (2.7) and (2.1b):

H (p) =
1

2
h

(
∇ϕ − 2

3
ψ (p)∇ζ − 1

3
h∇ψ (p)

)2

+
1

90
h
(
ψ ∇ζ − h ∇ψ (p)

)2
+

1

6
h
(
ψ (p)

)2
+

1

2
g ζ 2, (3.2)

which indeed is positive definite, since the water depth h is always positive. Note that
the Hamiltonian density is fully nonlinear: no approximations have been made apart
from the form and number of the shape functions, and the mild-slope approximation.
The latter is only for convenience and is not essential to the method.

Taking the variations of the Hamiltonian H =
∫∫

H dx, the flow equations (2.5)
become, after some rearrangements:

∂t ζ + ∇ ·
(
hU (p)

)
= 0, (3.3a)

∂t ϕ +
1

2

(
U (p)

)2 − 1

45

(
ψ (p) ∇ζ + h ∇ψ (p)

)2
+

1

6

(
1 +

1

5
(∇ζ )2

) (
ψ (p)

)2

+ ∇ ·
[

h

(
2

3
∇ϕ − 7

15
ψ (p)∇ζ − 1

5
h ∇ψ (p)

)
ψ (p)

]
+ gζ = 0, (3.3b)

hψ (p)

(
1

3
+

7

15
(∇ζ )2

)
−

(
2

3
h∇ϕ − 1

5
h2∇ψ (p)

)
· ∇ζ

+ ∇ ·
(

1

3
h2∇ϕ − 1

5
h2ψ (p)∇ζ − 2

15
h3∇ψ (p)

)
= 0, (3.3c)

where U (p)(x, t) is the depth-averaged velocity:

U (p) = ∇ϕ − 2

3
ψ (p)∇ζ − 1

3
h∇ψ (p). (3.4)

For one spatial dimension, these equations are the same as those derived in Klopman,
Dingemans & van Groesen (2005). So (3.3a, b) are the mass-conservation equation
for the time evolution of ζ and a Bernouilli-like equation for the surface potential ϕ.
Further, we have to solve a linear elliptic equation (3.3c) in terms of ψ (p), for given
ζ and ϕ.

Later, in § 6, we will give the results of some numerical simulations using equations
(3.3) in one spatial dimension. The linear characteristics of the parabolic structure
model, i.e. linear dispersion and shoaling, will be derived in § 5.

4. General series model
Now we treat the general case of a vertical velocity-potential structure, as given

in (2.4). By carefully choosing a small number M of shape functions fm(z; h0, ζ, κm),
m = 1 . . . M , one aims at getting a good approximation to the exact vertical flow
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structure. Using (2.7) in (2.5), we find for H (ζ, ϕ, ψm; x, t):

H =
1

2
( h0 + ζ ) ( ∇ϕ )2

+
1

2
Fmn ( ∇ψm ) · ( ∇ψn ) +

1

2
Gmnψmψn ( ∇ζ )2 +

1

2
Kmnψmψn

+ Pm ( ∇ψm ) · ( ∇ϕ ) + Qmψm ( ∇ϕ ) · ( ∇ζ ) + Rmnψn ( ∇ψm ) · ( ∇ζ )

+
1

2
gζ 2, (4.1)

where the integrals therein are defined by

Fmn(ζ, h0; κm, κn) =

∫ ζ

−h0

fmfn dz = Fnm, (4.2a)

Gmn(ζ, h0; κm, κn) =

∫ ζ

−h0

(∂ζfm)(∂ζfn) dz = Gnm, (4.2b)

Kmn(ζ, h0; κm, κn) =

∫ ζ

−h0

(∂zfm)( ∂zfn) dz = Knm, (4.2c)

Pm(ζ, h0; κm) =

∫ ζ

−h0

fm dz, (4.2d )

Qm(ζ, h0; κm) =

∫ ζ

−h0

(∂ζfm) dz, (4.2e)

Rmn(ζ, h0; κm, κn) =

∫ ζ

−h0

fm(∂ζfn) dz. (4.2f )

Taking the variations of H , as required by the Hamiltonian system (2.5), and keeping
in mind that the coefficients as given in (4.2) also depend on ζ (x, t), gives the following
flow equations:

∂tζ + ∇ · [(h0 + ζ ) ∇ϕ + Pm ∇ψm + Qm ψm∇ζ ] = 0, (4.3a)

∂tϕ +
1

2
(∇ϕ)2 + g ζ + R = 0 (4.3b)

and

[Glm (∇ζ )2 + Klm] ψm + Ql (∇ϕ) · (∇ζ ) + Rml (∇ψm) · (∇ζ )

− ∇ · (Flm ∇ψm + Pl ∇ϕ + Rlm ψm ∇ζ ) = 0 for l = 1. . .M , (4.3c)

where the non-hydrostatic term R(x, t) is given by

R =
1

2
F ′

mn (∇ψm) · (∇ψn) +
1

2
[G′

mn (∇ζ )2 + K ′
mn] ψm ψn + [P ′

m ∇ψm + Q′
m ψm ∇ζ ] · ∇ϕ

+ R′
mn (∇ζ ) · (∇ψm) ψn − ∇ · [Gmn ψm ψn ∇ζ + Qm ψm ∇ϕ + Rmn (∇ψm) ψn]. (4.4)

Here a prime denotes variation with respect to ζ (x, t), e.g. K ′
mn ≡ δKmn/δζ . Observe

that, as a result of fm = 0 at z = ζ (x, t), we have

F ′
mn = Rmn + Rnm and P ′

m = Qm. (4.5)
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As before, for the parabolic structure model, we have a mass conservation equation
(4.3a), a Bernoulli equation (4.3b) and a series of second-order elliptic equations
(4.3c), linear in ψm. The highest derivatives are second-order spatial derivatives. For
numerical applications, the solution of the elliptic equations requires that they are
well conditioned, i.e. that the lth elliptic equation is independent of the nth equation,
for l �= n. Therefore these shape functions fm have to be sufficiently independent of
each other. This may pose restrictions on the choice of the shape functions fm, as
well as the maximum number of shape functions M . See, for example, Dommermuth
& Yue (1987), where the computations only converged for a small number of shape
functions.

Fortunately, in general, only a small number of well-chosen shape functions is
sufficient to get good approximate models. Often, using only one shape function, i.e.
M = 1, may already give good results. In the remainder, we will treat a few examples.
Besides the parabolic structure model, with shape function f (p)(z; ζ, h0) and presented
in § 3, we will discuss two other examples: a cosh (hyperbolic-cosine) structure model
and a power-series structure model.

4.1. Hyperbolic-cosine structure model

First, one possibility is to exploit the well-known hyperbolic-cosine vertical structure
as found in the full linear wave theory:

f (c)(z; ζ, h0, κ) = cosh κ ( h0 + z ) − cosh κ ( h0 + ζ ) , (4.6)

where κ(x) is an additional parameter, which can be chosen for instance on the basis
of the carrier-wave angular frequency ω0 of incoming waves and the local water depth
h0(x), using the linear dispersion relationship.

The vertical integrals (4.2), as well as their ζ -derivatives, valid for the
cosh and power-series structure models are given in the Appendix. Then the
associated Hamiltonian density H (c)(ζ, ϕ, ψ (c); x, t), using (4.1), becomes after some
manipulations:

H (c) =
1

2
h

(
∇ϕ − D∇ψ (c) − κ Sψ (c)∇ζ

)2
+

1

4

1

κ

(
κ h + SC − 2

S2

κh

)(
∇ψ (c)

)2

+
1

4
κ (SC − κ h)

(
ψ (c)

)2
+

1

2
g ζ 2 (4.7)

with

D ≡ cosh (κ h) − sinh (κ h)

κ h
, S ≡ sinh (κ h) and C ≡ cosh (κ h). (4.8)

The Hamiltonian density H (c) is indeed positive definite, since the coefficients in front
of (∇ψ)2 and (ψ (c))2, in the second and third term on the right-hand side, are always
positive for κ > 0 and h > 0. When the integrals from (A 2) are applied to (4.3), we
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get after some algebraic manipulations:

∂tζ + ∇ ·
(
hU (c)

)
= 0, (4.9a)

∂tϕ +
1

2

(
U (c)

)2
+

1

2
κ2S2

(
ψ (c)

)2
+

1

2
D2

(
∇ψ (c)

)2 − κhU (c) ·
[(

S − D
κ h

)
∇ψ (c)

+ κ Cψ (c)∇ζ

]
+ ∇ ·

(
κ hSU (c)ψ (c)

)
+ gζ = 0, (4.9b)

− κ hS
(
∇ϕ − D∇ψ (c) − κ Sψ (c)∇ζ

)
· ∇ζ +

1

2
κ (SC − κ h) ψ (c)

+∇ ·
[
hD

(
∇ϕ − κ Sψ (c)∇ζ

)
+

1

κ

(
S2

κh
− D2κ h − 1

2
κ h − 1

2
SC

)
∇ψ (c)

]
= 0, (4.9c)

where U (c)(x, t) is the depth-averaged velocity:

U (c) ≡ ∇ϕ − D∇ψ (c) − κSψ (c)∇ζ. (4.10)

We did not use U (c) in (4.9c), since this is basically an elliptic equation in terms of
ψ (c) and U (c) depends on ψ (c).

4.2. Power-series structure model

Second, in the power-series structure model, we use for the vertical shape functions a
power-series expansion around the free surface z = ζ (x, t). So,

f (s)
m = (z − ζ (x, t))m, with m = 1. . .M . (4.11)

This can be seen as a generalization of the parabolic structure model. Through
the choice of the expansion around the free surface, the still water depth h0 is not
present in the shape functions. For this particular choice, the last two terms of (2.6a)
disappear. So, (2.7a) is exact. The bottom-slope terms in the flow equations now
appear through the variations of the Hamiltonian. Because no explicit approximation
in the bottom-slope terms has been made, we have not made a mild-slope assumption
in this case. The integrals, required in the Hamiltonian density (2.1b) and in the flow
equations (4.3), are given by (A 4).

We do not yet know the maximum value of M for which the shape functions f (s)
m

are sufficiently independent of each other, in order that the numerical approximation
to the flow equations will result in a well-conditioned set of equations. Convergence
may be improved by using orthogonal Chebychev polynomials instead of the simple
power series resulting from (4.11).

Some linear characteristics of the variational Boussinesq model, i.e. the linear
dispersion characteristics and the linear shoaling behaviour, will be derived in the
next section. They will be applied to the three given examples with parabolic, cosh
and power-series shape functions.

5. Linear wave characteristics from the average Lagrangian
5.1. Average Lagrangian for linear waves

The linear frequency dispersion and shoaling of the variational Boussinesq model is
studied. Since we have a variational model, we apply the average Lagrangian technique
(see e.g. Whitham 1974, § 11.7 and chapter 14) to the one-dimensional linearized wave
equations. This leads, due to the invariance with respect to wave phase, to a wave
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action equation (Hayes 1970a,b, 1973; Whitham 1974). For time-periodic waves, the
invariance of the wave action flux provides the shoaling characteristics. The present
analysis method is easier to apply than the direct manipulations of Boussinesq
equations by a method due to Wentzel, Kramers, Brilliouin and Jeffreys (known as
the WKBJ method) (Madsen & Sørensen 1992; Dingemans 1997, §§ 5.5.8 and 5.5.9;
Ludwig 1970). Furthermore, the variational approach gives a direct representation
of the ‘global’ (integral) effects of shoaling from one location to another, using
the invariance of the action flux. Previous WKBJ approaches give ‘local’ changes,
associated, in our case, with the spatial derivative of the wave action flux. Chen &
Liu (1995) integrate the local shoaling characteristics to obtain the global shoaling
behaviour. It is not clear a priori that the integration of the local shoaling behaviour
gives a conservation law for the energy flux in many Boussinesq models. In our case
the conservation of wave action is guaranteed, because we start with a variational
model.

For a linear problem with one spatial dimension x, the Lagrangian will be a second-
degree polynomial in terms of ζ , ϕ, ψ and their derivatives. So, for the linear wave
problem the Lagrangian and Hamiltonian densities, L0 and H0 respectively, become
by use and reduction of (2.1) and (4.1):

L0 = ϕ∂tζ − H0, (5.1a)

H0 =
1

2
h0(∂xϕ)2 +

1

2
F mn (∂xψm) (∂xψn) +

1

2
Kmn ψm ψn

+ P m (∂xψm) (∂xϕ) +
1

2
g ζ 2 (5.1b)

with the overbar denoting evaluation of the quantity at ζ = 0. By taking variations
of

L0(ζ, ϕ, ψm) ≡
∫∫

L0(ζ, ϕ, ψm; x, t) dx dt (5.2)

with respect to ϕ(x, t), ζ (x, t) and ψl(x, t), we get from δL0 = 0:

∂tζ + ∂x(h0∂xϕ + P m ∂xψm) = 0, (5.3a)

∂tϕ + gζ = 0, (5.3b)

Klmψm − ∂x(F lm ∂xψm + P l ∂xϕ) = 0, for l = 1, 2. . .M . (5.3c)

We use the average Lagrangian technique of Whitham (1974) to study the linear
dispersion and shoaling characteristics of the equations.

Assuming slowly modulated waves, we use the following approximation for ζ (x, t),
ϕ(x, t) and ψm(x, t):

ζ (x, t) = a(µx, µt) cos θ(x, t), ϕ(x, t) = b(µx, µt) sin θ(x, t), (5.4a)

ψm(x, t) = cm(µx, µt) sin θ(x, t), for m = 1, 2. . .M , (5.4b)

in agreement with the solution of (5.3) for progressive harmonic waves over a
horizontal bed. Here, µ � 1 is a small modulation parameter and θ(x, t) is the wave
phase. Neglecting derivatives of the amplitudes a(µx, µt), b(µx, µt) and c(µx, µt),
since they are O(µ) compared to the leading-order terms, we have

∂tζ ≈ ωa sin θ, ∂xϕ ≈ kb cos θ and ∂xψm ≈ kcm cos θ, (5.5)

with the angular wave frequency ω(x, t) and wavenumber k(x, t) defined as

ω ≡ −∂tθ and k ≡ +∂xθ. (5.6)
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The linear approximations (5.4) and (5.5) are used in (5.1) to compute the Lagrangian
density L0(a, b, cm, θ; x, t). Next, Whitham (1974) introduces the average Lagrangian
density 〈L0〉 (a, b, cm, θ; x, t) as

〈L0〉 =
1

2π

∫ 2π

0

L0 dθ. (5.7)

For slowly varying wave fields with negligible reflection, this can be assumed to give
a good description. In our case, we get for the average Lagrangian density 〈L0〉 and
(positive definite) average Hamiltonian density 〈H0〉:

〈L0〉 =
1

2
ω a b − 〈H0〉 (5.8a)

with

〈H0〉 =
1

4
k2 h0 b2 +

1

4
(F mn k2 + Kmn) cm cn +

1

2
P m k2 b cm +

1

4
g a2. (5.8b)

Using the variations of 〈L0〉 (a, b, cm) =
∫∫

〈L0〉 dx dt with respect to a(µx, µt) and
cl(µx, µt), we get

b =
g

ω
a and (Klm + k2F lm)cm = − g

ω
k2P la (5.9)

for l = 1, 2. . .M . The last equation can be written in matrix form as

(K + k2F)c = − g

ω
k2 pa. (5.10)

Because of the positive-definite Hamiltonian 〈H0〉 (a, b) =
∫

〈H0〉 dx, this matrix

equation is invertible. With W denoting the inverse of the matrix in front of c, we can
write

c = − g

ω
k2W pa, where W ≡ (K + k2F)−1 (5.11a)

or, in component form,

cm = − g

ω
k2Wmn P na for m = 1, 2 . . . M. (5.11b)

Note from (5.10) that Wmn will be a rational function in terms of k2. Applying these
to the average Lagrangian density 〈L0〉, (b) and cm can be eliminated from 〈L0〉, and
we get after some algebraic manipulations:

〈L0〉 =
1

4

{
1 − ( k h0 )2

[
1 − ( k h0 )2

Wmn P m P n

h3
0

]
g

ω2 h0

}
ga2. (5.12)

This will be used consecutively to find the linear dispersion and shoaling
characteristics.

5.2. Linear dispersion

As is well known (Hayes 1970a,b, 1973; Whitham 1974, § 11.7), for linear waves the
average Lagrangian density 〈L0〉 has the form

〈L0〉 = D(ω, k)a2 (5.13)

with D(ω, k) the dispersion relationship. So variation with respect to a(µx, µt) directly
gives the linear dispersion relation D(ω, k) = 0. In our case, we have from the terms
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Figure 1. Linear dispersion characteristics of the parabolic and cosh structure model as a
function of kh0. (a) Phase speed C/

√
g h0 (with C ≡ Ω/k) in the cosh structure model (solid

lines with markers) versus the exact linear phase speed (solid line, lowest curve) and the
parabolic structure model (dashed line). (b) Relative error C/Cexact − 1 (on a linear scale) in
the phase speed of the cosh structure model (solid lines) and the parabolic structure model
(black dashed line). The markers are for different values of κh0: π/2 (–◦–), π (–�–), 2π (–�–)
and 3π (–�–).

between curly brackets in (5.12) being equal to zero:

ω = Ω(k, h0) with
Ω2 h0

g
≡ ( k h0 )2

[
1 − ( k h0 )2

Wmn P m P n

h3
0

]
. (5.14)

Further, we introduce the phase speed C ≡ Ω(k)/k, for which we find

C2

g h0

=

[
1 − ( k h0 )2

Wmn P m P n

h3
0

]
. (5.15)

For example, consider the parabolic structure model, which has M = 1, so, using the
integrals in the Appendix evaluated at ζ = 0:

F
(p)

=
2

15
h3

0, K
(p)

=
1

3
h0 and P

(p)
= − 1

3
h2

0. (5.16)

From (5.10), (5.11) and (5.14) we find for the linear dispersion relationship:

(
C(p)

)2

g h0

=
1 +

1

15
k2 h2

0

1 +
2

5
k2 h2

0

. (5.17)

This is the same dispersion relation as for the Boussinesq equations with improved
linear dispersion of Madsen et al. (1991, equation (15) for the case B = 1/15). The
linear dispersion characteristics, as compared with the exact result for the full linear
theory,

C2
exact

g h0

=
tanh k h0

k h0

, (5.18)

are shown in figure 1, up to kh0 = 4π (which corresponds to a water depth of twice
the wavelength, i.e. deep water). Up to kh0 = π the relative error in the phase speed
is less than 3 %.
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In our second example, the cosh structure model, we have from (4.6) and (A 2) for
the required integrals:

F
(c)

= −3

2

1

κ
S C +

1

2
h0 + h0C2

, K
(c)

=
1

2
κS C − 1

2
κ2h0, P

(c)
= −h0D (5.19)

with D ≡ cosh (κ h0) − (sinh (κ h0)/κh0), S ≡ sinh (κ h0) and C ≡ cosh (κ h0).
Using these in (5.10), (5.11) and (5.14), we find

(
C(c)

)2

g h0

=

(
S C
κ h0

− 1

)(
1 − k2

κ2

)
+ 2

k2

κ2

S
κ h0

D
(

S C
κ h0

− 1

) (
1 − k2

κ2

)
+ 2

k2

κ2
C D

. (5.20)

As can be seen from this approximate dispersion relation, we regain the exact value
of the linear dispersion relation at k = κ . Also the group velocity V = ∂kΩ is exact at
k = κ , i.e. ∂kΩ

(c)(κ) = ∂kΩexact (κ). The linear dispersion characteristics and associated
errors (as compared to the full linear theory) for the cosh structure model are shown
in figure 1. The fact that the dispersion errors are small both near kh0 = κh0 and
near kh0 = 0 is advantageous for the study of narrow-banded nonlinear wave groups,
where besides the carrier waves with wavenumbers approximately equal to k0, there
are also subharmonics present with wavenumbers near zero. This is also a desirable
feature when studying the interaction between (very) long waves and shorter waves.
Further note that κ(x) can be a spatially varying parameter, and may be chosen
differently at different locations to best facilitate the local conditions, i.e. local still
water-depth h0 and carrier wavenumber k0.

Next, we consider the power-series structure model (4.11). Here, for M > 1, we
have to solve (5.10) using the integrals as given in (A 4). For some small values of M

we have done this (using the maple symbolic algebraic manipulator), and as a result
we obtained the following dispersion characteristics, with q ≡ kh0:

(
C

(s)
1

)2

g h0

=
1 +

1

12
q2

1 +
1

3
q2

, (5.21a)

(
C

(s)
2

)2

g h0

=
1 +

1

10
q2 +

1

720
q4

1 +
13

30
q2 +

1

80
q4

, (5.21b)

(
C

(s)
3

)2

g h0

=
1 +

13

105
q2 +

1

420
q4 +

1

100800
q6

1 +
16

35
q2 +

3

140
q4 +

1

6300
q6

, (5.21c)

(
C

(s)
4

)2

g h0

=
1 +

17

126
q2 +

11

3024
q4 +

1

42336
q6 +

1

25401600
q8

1 +
59

126
q2 +

19

720
q4 +

5

14112
q6 +

1

1016064
q8

, (5.21d )

(
C

(s)
5

)2

g h0

=
1 +

14

99
q2 +

373

83160
q4 +

1

22680
q6 +

1

7983360
q8 +

1

10059033600
q10

1 +
47

99
q2 +

163

5544
q4 +

16

31185
q6 +

67

23950080
q8 +

1

279417600
q10

. (5.21e)
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Figure 2. Linear dispersion characteristics of the power-series structure model as a function

of kh0. (a) Phase speed C
(s)
M /

√
g h0 (with C

(s)
M ≡ Ω

(s)
M /k) in the power-series structure model

(solid lines with markers) versus the exact linear phase speed (solid line, lowest curve) and the

parabolic structure model (dashed line). (b) Relative error C
(s)
M /Cexact − 1 (on a linear scale)

in the phase speed of the cosh structure model (solid lines with markers) and the parabolic
structure model (dashed line). The markers for different values of M are M = 1 (–�–), M = 2
(–�–), M = 3 (–�–) and M = 5 (–�–).

Here C
(s)
M (k, h0) is the phase speed for the case with M terms in the power-series

expansion. A comparison for the phase speed and the relative error therein is made
in figure 2, as a function of the relative depth kh0. As can be seen, for M = 2 the
relative error ε ≡ C

(s)
M /Cexact − 1 is less than 0.01 for kh0 < 2.77, i.e. for almost the

whole range of shallow to deep-water waves (considering kh0 > π as deep water).
For M = 3 and M = 5 the range where ε < 0.01 has extended to kh0 < 5.53 and
kh0 < 14.07, respectively.

Concerning the accuracy of these phase velocities, we notice that these
approximations are not the same as the Padé approximations to the exact linear
phase velocity squared C2

exact (see (5.18)). For M = 3 the result is about the same as
for the [4, 4] Padé approximation in terms of q , whereas it is not as accurate as the
[6, 6] Padé (which has the same powers of q in the numerator and denominator). For
M = 4 the accuracy is in between those of the [4, 4] and [6, 6] Padé approximations.

5.3. Linear shoaling

The linear shoaling characteristics are studied using the wave action equation, resulting
from the variation of the average Lagrangian 〈L0〉 ≡

∫∫
〈L0〉 dx dt with respect to

the wave phase θ(x, t). Using (5.14), we can write the average Lagrangian density
〈L0〉, equation (5.12), as

〈L0〉 =

(
1 − Ω2(k, h0)

ω2

)
1

2
ga2. (5.22)

Note that through the phase averaging, the phase θ(x, t) itself no longer appears in the
average Lagrangian density 〈L0〉 (a, k, ω; x, t), equation (5.12), but only its derivatives
ω ≡ −∂tθ and k ≡ +∂xθ . Consequently, the result is a conservation equation (Hayes
1970a,b, 1973; Whitham 1974):

∂tA + ∂xB = 0 (5.23)
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with, using (5.22),

A ≡ +
∂ 〈L0〉

∂ω
=

1
2
g a2

ω
and B ≡ − ∂ 〈L0〉

∂k
= V

1
2
g a2

ω
. (5.24)

Here A (x, t) is the wave action, B(x, t) is the wave action flux. Further, V (x, t) ≡
∂B/∂A = B/A = ∂kΩ is the group velocity (Hayes 1973), which depends on
the dispersion characteristics of the specific variational Boussinesq model under
consideration.

Now, when studying the linear shoaling behaviour for the variational Boussinesq
model, we consider time-harmonic waves, i.e. the wave amplitude a(x, t) is constant in
time and the angular frequency ω is a constant. Hence ∂tA = 0, and (5.23) becomes

∂x(V A ) = 0. (5.25)

As a result, we have that
√

V a = constant, (5.26)

when going from one depth h0(x) to another. So, when the wave has an amplitude
a1 ≡ a(x1) at location x1, the wave amplitude at x2 will be a2 =

√
V1/V2a1, with V1

and V2 the group velocity at x1 and x2, respectively.
As an example, we consider the parabolic structure model, with linear frequency

dispersion given by (5.17). Consequently, the group velocity V (p) ≡ ∂kΩ
(p) for this

model is

V (p) =
Ω

k

⎡
⎢⎢⎣ 1 −

1

3
k2 h2

0(
1 +

1

15
k2 h2

0

)(
1 +

2

5
k2 h2

0

)
⎤
⎥⎥⎦ . (5.27)

Note that in the shallow-water limit kh0 → 0 we have V (p) →
√

gh0. And for the
deep-water case kh0 → ∞ we have that V (p) →

√
gh0/6.

This can be compared with the full linear theory, where we have for the group
velocity Vexact (see e.g. Dingemans 1997, equation (2.29)):

Vexact =
1

2

Ωexact

k

(
1 + k h0

1 − tanh2 k h0

tanh k h0

)
, (5.28)

which has the shallow-water limit Vexact /
√

gh0 → 1 for kh0 → 0 and the deep-water
limit Vexact /

√
g/k → 1

2
for kh0 → ∞ (and keeping k fixed).

Considering again the parabolic structure model, the integral shoaling behaviour
according to (5.26), and associated errors as compared with full linear theory, are
depicted in figure 3. As can be seen, the agreement between the approximate model
and the full linear theory result is quite good. For instance, for periodic waves
propagating from a location with kh0 = π to a very shallow location (kh0 → 0), the
relative error in the wave amplitude (a) at the shallow-water location is less than
10 %. And when starting at kh0 = π/2, the shallow-water wave amplitude is less than
1 % in error with the full linear theory result.

A different approach to the study of linear wave shoaling, without demanding
energy or action conservation, has been used by e.g. Madsen & Sørensen (1992) (and
Dingemans 1997, § 5.5). They use a WKBJ method directly on the wave evolution
equations themselves, ending up with a description of the ‘local’ shoaling behaviour,
i.e. how a′(x)/a(x) depends on h′

0(x)/h0(x), with (·)′ denoting x-derivatives. Our
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Figure 3. Linear shoaling behaviour of the parabolic structure model as a function of kh0.
(a) Square root of the relative group velocity (V/

√
gh0)

1/2, for the parabolic structure model
(solid line) and according to the exact linear shoaling factor (Vexact/

√
gh0)

1/2 (dashed line).
(b) Relative error

√
V/Vexact − 1 on a semilogarithmic scale.

result is the same as for the Madsen & Sørensen (1992) model (see Dingemans
1997, equation (5.190)). This result has also been obtained by a local analysis
using the method of Ludwig (1970) (see also Dingemans 1997, p. 569), on the
flow equations (5.3) themselves. This is not surprising, since Bretherton (1968) has
shown the correspondence between the conservation of wave action and the WKBJ
approach for linear systems arising from a variational principle.

With regard to the cosh structure model, we can remark that since the group
velocity is exact for k = κ , we can have exact linear shoaling for monochromatic
waves with frequency ω0, provided κ is chosen according to the local depth and the
linear dispersion relation ω2

0 = gκ tanh κh0. For the power-series structure model, the
shoaling coefficient behaves in a similar fashion as for the parabolic structure model:
the relative error in

√
V is larger than the error in the phase speed C, but of the same

order (typically two to five times as large). The analytical expressions for the group
speed become quite lengthy for the cosh structure model and for the power-series
structure model with M � 3, and will not be presented here.

6. Numerical simulations for the parabolic structure model
6.1. Numerical method

The parabolic structure model (3.3) in one spatial-dimension is used to study
the applicability and nonlinear behaviour of the variational Boussinesq model
numerically. Instead of the surface potential ϕ(x, t), we work with its gradient
u(x, t) ≡ ∂xϕ. So, the equations to be solved are, taking the x-derivative of (3.3b),

∂t ζ + ∂x

(
hU (p)

)
= 0, (6.1a)

∂t u + ∂x

{
1

2

(
U (p)

)2
+ g ζ − 1

45

(
ψ (p)∂xζ + h ∂xψ

(p)
)2

+
1

6

(
1 +

1

5
(∂xζ )2

)(
ψ (p)

)2

+ ∂x

[
h

(
2

3
u − 7

15
ψ (p)∂xζ − 1

5
h ∂xψ

(p)

)
ψ (p)

]}
= 0, (6.1b)

hψ (p)

(
1

3
+

7

15
(∂xζ )2

)
−

(
2

3
hu − 1

5
h2∂xψ

(p)

)
∂xζ

+ ∂x

(
1

3
h2u − 1

5
h2ψ (p)∂xζ − 2

15
h3∂xψ

(p)

)
= 0 (6.1c)
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with the depth-averaged velocity

U (p) = u − 2

3
ψ (p)∂xζ − 1

3
h∂xψ

(p). (6.2)

Note that the equations solved in the numerical model are dimensional.
We use the method of lines for the numerical solution of this set of partial

differential equations: first the equations are discretized in space, and then the resulting
sets of ordinary differential equations for the temporal evolution are marched in time.
For the spatial discretization, a pseudo-spectral method is used on a periodic spatial
domain. The flow quantities ζ , u and ψ (p), as well as the still water depth h0, are
discretized on a uniform grid of N intervals and step size �x: ζ,j , u,j , ψ

(p)
,j and h0,j

denote the respective quantities at location x = j �x. Spatial derivatives of a quantity
are computed in the Fourier wavenumber domain, using the fast Fourier transform
(FFT) to switch back and forth between the spatial and the wavenumber domain.

As a result, (6.1a, b) become a set of N first-order ordinary differential equations
for the time evolution of ζ,j and ϕ,j , j = 1. . .N . These are marched in time using a
variable step-size Runge–Kutta time integrator (‘ode45’ in matlab).

Furthermore, we have to solve the linear system of equations resulting from (6.1c)
for ψ

(p)
,j , j = 1. . .N , for given ζ,j and ϕ,j at each time level. This is done by using

a conjugate-gradient (CG) method, ‘bicgstab’ in matlab. Due to the use of Fourier
series for determining derivatives, the associated system matrix is fully populated
and evaluating the system of equations directly by matrix–vector multiplication will
involve N 2 operations. Fortunately, at each stage in the CG method, not the system
matrix, but only the vector of residuals for each of the equations is needed. This can
efficiently be determined by use of the FFT, resulting in N log N operations, which is
much less than N2. The solution of the previous stage in the time-stepping procedure
is used as an initial estimate for the solution ψ

(p)
,j , j = 1. . .N .

The CG method is accelerated by using as a pre-conditioner the LU decomposition
of a second-order central finite-difference approximation to (6.1c). As a result, only
a few iterations (typically 2–7) are necessary to let the CG process converge to a
relative residual norm of 10−7. The overall computing time of the above described
pseudo-spectral method is proportional to N log N , i.e. almost proportional to N for
large N .

Because the equations are nonlinear, the discretization may result in aliasing errors.
The equations involve at most quartic operations on combinations of flow quantities
(and depth h0). If the flow quantities contain only energy for wavenumbers below
kmax , the quartic operations will result in a transfer of energy to higher wavenumbers,
up to 4 kmax . However, if this post-operation wavenumber is larger than the Nyquist
wavenumber kN = π/�x, it will by aliasing fold back to the lower frequency kN −
(4 kmax − kN ). To prevent the contamination by aliasing of results for wavenumbers
below kmax , we have to demand

kmax � kN − 4 kmax , which amounts to kmax �
2

5
kN . (6.3)

So, the time derivatives of ζ,j and ϕ,j , j = 1 . . . N , are spatially low-pass filtered to
prevent aliasing by energy content in the wavenumber range above 2π/(5�x).

No artificial damping or smoothing have been been used, apart from the small
numerical damping inherent to the Runge–Kutta time integration used. The numerical
model was found to be very robust, to which we think the positive-definiteness of the
Hamiltonian density has contributed significantly.
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T (s) H (m) kh0 H/h0

20† 3.0 0.1935 0.60
10 2.0 0.4367 0.40
6 1.8 0.8042 0.36
4 1.5 1.3872 0.30

† For the case T = 20 s and H = 3.0 m we have used 200 points per wavelength,
instead of the 100 points per wavelength we have used in all other cases.

Table 1. Conditions for periodic waves over a horizontal bed.

Next, we will present several examples computed with the pseudo-spectral
implementation of the parabolic structure model. First, periodic waves are considered,
both over a horizontal bed and propagating over an underwater bar. Thereafter, the
propagation of confined wave groups over a horizontal bed and a slope will be
presented.

6.2. Periodic waves

6.2.1. Periodic waves over a horizontal bed

First, some test cases for periodic waves over a horizontal bed have been computed.
As initial condition, we use accurate solutions according to fully nonlinear potential
theory for periodic waves, computed with the method of Rienecker & Fenton (1981).
In all cases we use a constant water depth h0 = 5 m and g = 9.81 m s−2. We consider
the four wave conditions as given in table 1. The length of the periodic computational
domain is equal to the wavelength.

The computed free-surface elevations after a simulation time of five wave periods
are presented in figure 4. As can be seen, the model performs quite well. The
phase speed of the nonlinear waves computed with the parabolic structure model is
somewhat larger than the exact wave speed, in agreement with what has been found
in the analysis of linear waves (see figure 1).

As an indication of the accuracy of the numerical method, we give the changes
in the spatial-averaged values of the Hamiltonian and depth-integrated horizontal
momentum (both divided by the fluid density), for the case of T = 6 s. The spatial-
averaged Hamiltonian, i.e. sum of kinetic and potential energy per unit length, is
initially equal to 3.684 m3 s−2, and reduces to −2.1×10−7 and −3.7×10−5 m3 s−2 after,
respectively, 5 and 1000 wave periods. The spatial-averaged horizontal momentum is
initially equal to −2.1 × 10−8 m2 s−1 (instead of zero, its exact value), and becomes
−3.3×10−8 and −5.7×10−6 m2 s−1 after 5 and 1000 wave periods respectively. These
errors are mainly due to the errors in the CG solver for the elliptic equation and the
numerical damping in the time-integration method. The spatial averages of the free-
surface elevation ζ and potential gradient u are conserved to within machine accuracy.

6.2.2. Periodic waves over an underwater bar

As a second test case, we consider periodic waves propagating over an underwater
bar (Dingemans 1997, § 5.9), for which measurements from a laboratory experiment
are available (with the same experimental set-up as in Luth, Klopman & Kitou 1994).
The experimental set-up is shown in figure 5(a), with the waves travelling from left to
right. We will consider test case A, with waves of period T = 2.857 s and amplitude
a = 0.020 m. The still water depth in front of the bar is 0.80 m, and on top of the
bar 0.20 m. The front bed slope of the bar is 1/20, the 0.20 m depth region extends
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Figure 4. Snapshots of the free-surface elevation after five wave periods: the parabolic
structure variational model (solid line) and the Rienecker and Fenton solution (Rienecker &
Fenton 1981) (dashed line). T = 20, 10, 6, 4 s in (a), (b), (c), (d ), respectively.

over 4.0 m and the back slope of the bar is 1/10. For further details we refer to
Dingemans (1997) and Luth et al. (1994).

A snapshot of the computed free-surface elevation is shown in figure 5(b). As the
waves propagate up the front slope, they increase in amplitude and are nonlinearly
distorted. The generated superharmonics travel further as free waves after the shallow
part of the bar. This generates a complex pattern of different frequency components
travelling at different phase speeds after the bar. The amplitudes of free-surface
harmonics at the carrier-wave frequency ω0, as well as the amplitudes of the first
three superharmonics, are shown in figure 5(c). As can be seen, the computed
amplitudes compare quite well with the measured ones. Notice that the oscillations
in the amplitude of the principal harmonic are due to (linear) reflections due to the
bar bathymetry.

Since the parabolic structure model has the same linear dispersion characteristics
as the model of Madsen et al. (1991), the results for the present parabolic structure
model are very similar (see Dingemans 1997, figures 5.30–5.34). The phase speed
of the free superharmonics after the bar, in relative deep water, is overestimated.
This results in phase errors between the components, especially at furthest measuring
locations 6 and 12. Models with better linear dispersion characteristics are known
to perform better in this region (see e.g. Dingemans 1994; Dingemans 1997, § 5.9.3;
Lynett & Liu 2004a). In the present approach, this may be achieved by using for
instance the cosh structure model with well-chosen x-variations of the parameter κ

(see figure 1), or the general series model with M�3 (see figure 2).

6.3. Confined wave groups

When wave groups propagate over variable bathymetry, one has besides the distortion
of the wave group (Djordjević & Redekopp 1978; Turpin, Benmoussa & Mei 1983)
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Figure 5. Periodic waves over a bar, test case A. (a) Experimental set-up, showing bottom
topography and measurement locations 1–12. (b) Snapshot of the computed free-surface
elevation at t = 60 s, and bottom topography (on a different, vertical distorted scale).
(c) Amplitudes of surface elevation harmonics as a function of x, for the computation (open
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also the effect of the generation of free long waves (Mei & Benmoussa 1984; Liu
1989). These long waves are of interest for coastal morphology and the forcing of
moored floating structures and ships. Here, we will study the capabilities of the
variational Boussinesq model with parabolic vertical structure in predicting wave
group deformation and long wave generation. This will be done using confined wave
groups, with a sech (hyperbolic-secant) envelope of the carrier waves.

First, we will look into the propagation of a confined wave group over a horizontal
bed, and look into its deformation as it propagates and the emission of spurious
waves due to imperfect initial conditions. Second, the propagation of this wave group
over a slope into a shallower constant-depth region will be computed, and compared
with the results of van Groesen & Westhuis (2002).
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The initial water depth in all computations is h0 = 12 m, the carrier-wave frequency
of the confined wave group is ω0 = π/3 rad s−1, the carrier-wave amplitude in the
centre of the group is a0 = 1.0 m and the gravitational acceleration is g = 9.81 m s−2.
The spatial step was taken equal to 2 m in all subsequent computations, i.e. about
25 points per wavelength. With the maximum wavenumber restricted by (6.3), this
means that up to the fifth spatial harmonic can be represented on this grid.

The initial conditions for the free-surface elevation ζ (x, t) and potential-gradient
u(x, t), including second-order subharmonics and superharmonics, as well as second-
order modulation effects on u(x, t), were computed from the formulations as given in
Dingemans & Otta (2001, equations (39)–(45), (101)–(103)). These initial conditions
correspond with the hyperbolic-secant solution of the nonlinear Schrödinger (NLS)
equation, as derived by a multiple-scales perturbation-series approach from the full
nonlinear potential flow problem. An NLS equation derived from the parabolic
structure model will have slightly different values of the coefficients and the second-
order subharmonics and superharmonics. Notice that there is a small typographical
error in (44) of Dingemans & Otta (2001): the second transformation should be
κ

φ
2 = (ω2/g2)κζ

2 .

6.3.1. Confined wave group over a horizontal bed

Given the initial conditions for ζ and u as specified above, the flow evolution
equations are computed for 900 s, i.e. 150 carrier-wave periods. The results are
shown in figure 6. As can be seen, the wave group envelope does not deform much,
after travelling for about 100 carrier wavelengths and five wave-group lengths. The
wave envelope has become a bit narrower and peaked, and slightly asymmetrical
horizontally around its centre.

Further, some spurious waves are shed, by the deviation of the parabolic structure
model from the fully nonlinear potential-flow equations, as well as from the
approximations underlying the NLS equation. In figure 6(c) a spurious wave group
with wavenumber 2 k0 twice the carrier wavenumber k0 is seen, of amplitude 0.01 m,
i.e. about 1 % of the carrier-wave amplitude a0 = 1.0 m. These spurious waves travel
slower than the carrier waves. In figure 6(d ) a near-solitary long wave of about 2.5 mm
height has travelled about twice the distance of the carrier-wave group. Finally, in
figure 6(e) a group of left-travelling spurious waves with wavenumbers near 2 k0 and
higher can be found, of amplitudes less than 2 mm.

6.3.2. Confined wave group on a slope

Next, we will consider the same confined wave group encountering an underwater
slope. Significant depth changes will start at shorter distances from the initial wave
group location than the group travel distance discussed above. Therefore, we may
consider the previously discussed initial wave conditions an adequate approximation
to the ‘exact’ soliton-envelope wave-group solution to the parabolic structure model
(if it exists).

The confined wave group will now propagate from a region with initial and constant
water depth h0 = 12 m, via a 0.012 slope of 500 m horizontal extent, into another
region of constant and shallower depth, h0 = 6 m. We will compare our results
with those of van Groesen & Westhuis (2002) (see also Westhuis 2001), who use a
finite element method to solve the fully nonlinear problem of surface waves on a
potential flow. Van Groesen & Westhuis (2002) use a different method to initialize the
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Figure 6. Surface elevation for a confined wave group over a horizontal bed and scattered
spurious waves. (a) Wave group at t = 0 s, (b) wave group at t = 900 s, (c) detail of slow
right-travelling short-wave tail at t = 900 s, (d ) detail of fast right-travelling long wave at
t =900 s, (e) detail of slow left-travelling short-wave group at t = 900 s.

confined wave group. This, in itself, will create some differences between their and our
results.

Notice that in the deeper part we have for the carrier waves a relative depth
k0h0 = 1.49, and in the shallow part k0h0 = 0.92. At kh = 1.36 the nonlinearity
coefficient in the NLS equation changes sign (see e.g. Benjamin & Feir 1967). So, for
the NLS equation, we go from the focusing regime for kh > 1.36 in the deeper part,
where the hyperbolic-secant soliton solution exists, to the defocusing regime with
kh < 1.36.

Two snapshots of the free surface elevation at t = 0 and 900 s, as computed with
the parabolic structure model, are given in figure 7. Clearly the deformation of the
wave group, as well as the generation of a free long wave, can be seen. In order to
compare with van Groesen & Westhuis (2002), some details are given in figure 8 at
t = 900 s. Note the appearance of the longer waves in the front of the deforming wave
group and the shorter waves in its tail. There is quite good agreement, both in the
evolution of the carrier-wave amplitude (figure 8a) as well as in the generated free
long wave (figure 8b). However, there are phase differences between the two models,
which we address now. In figure 8 the phase difference is small near the front of the
wave group at x = 7 km, and the phase difference is about half a wavelength in error
near x = 6 km. With a carrier wavelength of about 41 m this is a localization error of
approximately 20 m over a wave group length of ≈25 waves, and after propagating
over more than a hundred carrier wavelengths.



58 G. Klopman, B. van Groesen and M. W. Dingemans

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

−1.0

−0.5

0

0.5

1.0 Bottom
Free surface

−1.0

−0.5

0

0.5

1.0 Bottom
Free surface

ζ 
(m

)
ζ 

(m
)

x (km)

(a)

(b)

Figure 7. Wave group propagating over a slope: surface elevation ζ (x, t) (solid line) as a
function of x. (a) t = 0 s, and (b) t =900 s. The dashed line is the bottom elevation (not to
scale).

5800 6000 6200 6400 6600 6800 7000 7200 7400
−1.0

−0.5

0

0.5

1.0
Westhuis (2001)
Present model

7000 7200 7400 7600 7800 8000 8200 8400 8600 8800 9000
−0.2

0

0.2
Westhuis (2001)
Present model

ζ 
(m

)
ζ 

(m
)

(a)

(b)

x (m)

Figure 8. Wave group propagating over a slope: details of the surface elevation ζ (x, t) as a
function of x at t = 900 s. Present parabolic structure model (solid line) and the model of van
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Analysis showed us that the observed phase differences cannot be explained by
either the phase-speed error introduced by the model approximation or the one from
the numerical method. We conclude that the difference is due to the difference in
the initial conditions used in our model compared to those used by Westhuis (2001)
(see figure 9). As can be observed, differences appear at the front of the wave group
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ζ (x, t) as a function of x at t = 0 s. Present parabolic structure model (solid line) and the
model of van Groesen & Westhuis (2002) (dashed line).

(x > 1500 m). In this region, the wave amplitudes by Westhuis (2001) are smaller
than the theoretical ones.

7. Conclusions
Variational Boussinesq models with positive-definite Hamiltonian density, i.e. energy

densities per unit of horizontal area, are presented. The models are derived by
approximating the horizontal and vertical velocities in the kinetic energy, using a
series expansion with a small number of vertical shape functions for the velocity
(potential).

It is essential that the first shape function equals one at the free surface and all other
shape functions are zero at the free surface. This ensures that only two time-evolution
equations appear in terms of the canonical variables, viz. the surface elevation ζ (x, t)
and the free-surface potential ϕ(x, t) in the case of a velocity potential model (see
(4.3a,b)). The additional parameters ψm(x, t) are solved by a (series of) second-order
elliptic equations, linear in ψm(x, t) (see (4.3c)). All equations contain only low-order
partial derivatives: first-order time derivatives, second-order spatial derivatives for the
Hamiltonian models written in the surface potential and third-order spatial derivatives
for the models written in terms of velocities. No mixed space–time derivatives appear.
The cost is, as compared to classical Boussinesq models, that we have to solve (a
series of) additional elliptic equations in the flow parameters ψm(x, t) associated with
the introduced shape function(s).

The variational Boussinesq models thus derived have a positive-definite
Hamiltonian, which is important for a good dynamical behaviour of the model.
Further, several symmetries of the ‘exact’ Hamiltonian for water waves are
also transferred to the variational Boussinesq models. This results in associated
conservation laws, among others depth-integrated mass conservation and energy
conservation (for a horizontal bed also momentum conservation). Apart from the
approximations to the vertical velocity structure (which may include a non-essential
mild-slope approximation), no further approximations are made. The resulting
models are therefore fully nonlinear, i.e. without approximations regarding the wave
amplitude.

As examples, we have derived vertical flow structure models with one parabolic
shape function, one hyperbolic-cosine shape function and a polynomial power-series
expansion with several parameters. The linear characteristics of these models are
studied, using the average Lagrangian. The resulting linear frequency-dispersion
relationships are all well behaved, i.e. no real-valued poles in the resulting rational
functions in terms of the wavenumber k. This is a result of the positive-definite
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Hamiltonian. Also, wave action conservation can be used to show the integral effect
of linear shoaling from one location with a certain depth (and group velocity) to
another.

To study the nonlinear characteristics, we present numerical simulations for the
parabolic structure model in one horizontal dimension, using a pseudo-spectral
method. We only worked out numerical results for the parabolic structure model,
because it is the simplest of the models considered. We expect that the cosh structure
model and the power-series structure model (with M > 2) are able to give more
accurate results. For practical purposes, we recommend using the cosh structure
model, since it provides a good balance between accuracy on arbitrary depth and
numerical efforts. However, this is a point for further study. Recently, it has been
shown by Dingemans & Klopman (2009) that reflection properties are much improved
by a different normalization of the structure functions. Further properties are still
under investigation.

Using the parabolic structure model, the propagation and deformation of periodic
waves and confined wave groups have been computed, both over a horizontal bed
and over bathymetry. Comparison with other numerical methods, solving the fully
nonlinear potential-flow problem, as well as with measurements, show the capabilities
of the model. Besides, no numerical instabilities have been encountered, despite the
absence of dissipation in the numerical model – apart from the small dissipation in
the Runge–Kutta time integration. This may be attributed to the positive-definiteness
of the Hamiltonian density.

Appendix. Vertical integrals for the parabolic, cosh and power-series structure
model

For the parabolic vertical structure of the flow, as given by (3.1), the integrals (4.2)
and their ζ -derivatives become, using as before h ≡ h0 + ζ and dropping the indices
(since M = 1):

F (p) =
2

15
h3, F ′(p) =

2

5
h2, G(p) =

7

15
h, G′(p) =

7

15
, (A 1a)

K (p) =
1

3
h, K ′(p) =

1

3
, P (p) = −1

3
h2, P ′(p) = −2

3
h, (A 1b)

Q(p) = −2

3
h, Q′(p) = −2

3
, R(p) =

1

5
h2, R′(p) =

2

5
h. (A 1c)

Under the hyperbolic-cosine assumption for the vertical flow structure, as given in
(4.6), the integrals from (4.2) become

F (c) = −3

2

1

κ
SC +

1

2
h + hC2, F ′(c) = 2κhSD, (A 2a)

G(c) = κ2hS2, G′(c) = κ2S[2κhC + S], (A 2b)

K (c) =
1

2
κSC − 1

2
κ2h, K ′(c) = κ2S2, (A 2c)

P (c) = −hD, P ′(c) = −κhS, (A 2d )

Q(c) = −κhS, Q′(c) = −κ2hC − κS, (A 2e)

R(c) = κhSD, R′(c) = κ2h[C2 + S2] − κSC (A 2f )
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with

D ≡ cosh (κ h) − sinh (κ h)

κh
, S ≡ sinh (κ h) and C ≡ cosh (κ h). (A 3)

For the power-series flow structure, as given in (4.11), the integrals and their derivatives
become

F (s)
mn = (−1)m+n hm+n+1

m + n + 1
, F ′(s)

mn = (−1)m+nhm+n, (A 4a)

G(s)
mn = (−1)m+nmn

hm+n−1

m + n − 1
, G′(s)

mn = (−1)m+nmnhm+n−2, (A 4b)

K (s)
mn = G(s)

mn, K ′(s)
mn = G′(s)

mn, (A 4c)

P (s)
m = (−1)m

hm+1

m + 1
, P ′(s)

m = (−1)mhm, (A 4d )

Q(s)
m = (−1)m−1hm, Q′(s)

m = (−1)m−1mhm−1, (A 4e)

R(s)
mn = (−1)m+n−1n

hm+n

m + n
, R′(s)

mn = (−1)m+n−1nhm+n−1. (A 4f )
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